بررسی خواص الاستیک دی سولفید مولیبدن چند لایه تحت تنش عمودی فشاری قبادی ، نیره ' ^{اگروه} برق، دانشکده مهندسی، دانشگاه زنجان، زنجان

*چکید*ہ

در این مقاله خواص الاستیک دی سولفید مولیبدن (MOS) تحت تنش عمودی فشاری مورد بررسی قرار میگیرد. برای محاسبه منحنی تنش-کرنش این ساختار از شبیه سازی دینامیک مولکولی استفاده شده است. وابستگی منحنی تنش-کرنش و خواص الاستیک به تعداد لایه های MoS2 ترتیب پشته سازی لایه ها و دما مورد مطالعه قرار میگیرد. نتایج به دست آمده نشان می دهد که ثابت الاستیک عمودی، کرنش و تنش شکست به شدت وابسته به ترتیب پشته سازی لایه ها می باشند. همچنین با وجود اینکه افزایش دما موجب کاهش کرنش و تنش شکست می می از ایش می محلول این محلول محاسبه منحنی تنش-کرنش این ساختار از

Investigation of Elastic Properties of Multilayer Molybdenum Disulfide under Normal Compressive Stress

Ghobadi, Nayereh¹

¹ Department of Electrical and Computer Engineering, University of Zanjan, Zanjan

Abstract

In this work the elastic properties of multilayer molybdenum disulfide (MoS_2) under normal compressive stress is investigated. Molecular dynamic simulation is used to calculate the strain distribution and stress-strain relation of structures. The dependency of the stress-strain curve and elastic properties on the number of MoS_2 layers, stacking order of layers and temperature are studied. The results reveal that the vertical elastic constants, yield strain and stress strongly depend on staking order of the MoS_2 layers. Furthermore, it can be concluded from the results that while the rise in temperature results in the decrease of yield strain and stress, the increase in the number of MoS_2 layers improve the stiffness of the structure.

PACS No .6225.

دی سولفید مولیبدن (MoS2) مادهای با ساختار کریستالی لانه زنبوری دوبعدی و همانند گرافین میباشد. در این ساختار یک لایه Mo بین دو لایه S قرار گرفته است و خصوصیات منحصر به فردی ارائه میدهد. برای مثال MoS2 بالک یک نیمه هادی با شکاف انرژی ۱/۲ الکترون ولت می باشد [۱] که شکاف انرژی آن می تواند با تغییر تعداد لایه ا[۲]، ترتیب پشته سازی لایه ها [۳] و یا با اعمال تنش تغییر کند [٤و٥]. MoS2 تک لایه که می تواند با یا با اعمال تنش تغییر کند [٤و٥]. MoS2 تک لایه که می تواند با ایکترون ولت [۲] و قابلیت تحرک حامل های بالایی دارد و می تواند به خوبی در ساخت ترانزیستو رمورد استفاده قرار گیر د

مقدمه

شبیهسازی دینامیک مولکولی به بررسی خواص الاستیک MoS₂ چند لایه تحت تنش عمودی فشاری میپردازیم و اثر تغییر تعداد لایههای MoS₂، ترتیب پشتهسازی لایهها و دما را بررسی میکنیم. ادامه مقاله شامل روش شبیهسازی دینامیک مولکولی، مشخصه تنش-کرنش MoS₂ و خواص الاستیک این ساختار میباشد.

روش شبیه سازی

لایهها در MoS₂ چند لایه با ترتیبهای پشتهسازی مختلفی بر روی هم قرار گرفتهاند که در شکل ۱ نشان داده شده است [۳].

شکل ۱. MoS2 دو لایه با ترتیب های پشته سازی مختلف. اتم Mo با دایره سبز و اتم S با دایره زرد مشخص شده است. ۲ اتم S که روی هم قرار گرفته اند با یک دایره مشخص شده اند [۳].

در ساختارهای AA₁ (مشابه AA₁ با تغییر مکان Mo و در ساختارهای AA₂ (مشابه AA₁ با تغییر مکان Mo و B_1 و AB₁ تمهای S در لایه بالا روی اتم Mo از لایه پایین قرار \mathcal{R} فنهاند. در ساختارهای AA₂ و AB₄ اتمهای S روی مرکز حلقه \mathcal{R} فنه قرار گرفتهاند و بالاخره در AA₅ و AA₅ اتمهای S \mathcal{R} مقرار گرفتهاند. در میان این ساختارها AA₁ و AB₁ \mathcal{R} مقرار گرفتهاند. در میان این ساختارها AA₁ و AB₁ \mathcal{R} و AA₁ این ساختارها و AA₁ و C₁ \mathcal{R} مقرار گرفتهاند. در میان این ساختارها AA₁ و AB₁ \mathcal{R} و AA₁ این ساختارها (\mathcal{R} و AD₁ و AA₁ \mathcal{R} و AA₁ این ساختارها (\mathcal{R} و AO₁) \mathcal{R} به ترتیب \mathcal{R} و AO₁ آنگستروم میباشند (\mathcal{R}). فاصله بین \mathcal{R} ماه مجاور تعریف میشود و به شدت به ترتیب پشتهسازی \mathcal{R} با بالاترین انرژی بزرگترین فاصله بین لایهای، و ساختارهای \mathcal{R} با بالاترین انرژی بزرگترین فاصله بین لایهای، و ساختارهای \mathcal{R} ای AB₁ مار AB₁ کهترین ازرژی کوچکترین فاصله بین لایه که و داره \mathcal{R} ای AB₁ کهترین انرژی کوچکترین فاصله بین لایه که مین دارد.

جدول ۱ : فاصله بین لایهای در MoS₂ چند لایه با ترتیب پشتهسازی مختلف [۳]

AB ₃	AB ₂	AB ₁	AA ₃	AA ₂	AA_1	
$1/\Lambda$	٦/٢	٦/١	λ/λ	٦/١	٦/١	فاصله بین لایه ای (Å)

با اعمال تنش عمودی فشاری لایه ها جابه جا می شوند. با اندازه گیری تغییرات فاصله بین لایه ای به صورت تابعی از فشار، مشخصه تنش-کرنش ساختار به دست می آید. کرنش برابر با = 3مشخصه تنش-کرنش ساختار به دست می آید. کرنش برابر با حالت تعادل و b فاصله بین لایه ای بعد از اعمال تنش است. برای شبیه سازی خواص الاستیک ساختار شبیه سازی دینامیک مولکولی با استفاده از نرم افزار LAMMPS انجام شده است [۱۳]. برای برهم کنش های صفحه ای بین اتم های Mo و S در صفحه 2002 یتانسیل استیلینگر -وبر (SW) استفاده شده است [۱۶]. این پتانسیل نسبت به پتانسیل های ترسف و برنر ساده تر بوده و پارامترهای نارد -جونز ۲–۱۲ (6-112) مدل شده است. پارامترهای استفاده نده برای این پتاسیل در جدول ۲ آمده است [۱۵].

	Mo-Mo	S-S	Mo-S
ε(eV)	•/•••0٨0٩0	•/•٢•	•/••*7٨
σ(Å)	٤/٢٠	٣/١٣	٣/٦٦٥

اندازه سلول واحد MoS2 در جهت آرمچر ٥/٤٠ آنگستروم میباشد. سلول شبیهسازی شده شامل ۸×۸ سلول واحد در صفحه xy می باشد. قطر سلول شبیه سازی شده ۵ نانومتر می باشد که سبب میشود تاثیر اندازه سلول روی خواص مکانیکی به حداقل برسد [17]. ارتفاع سلول شبیهسازی شده به تعداد لایههای MoS₂ بستگی دارد. در دو جهت صفحه xy شرایط مرزی پریودیک در نظر گرفته شده است و برای جهت z از شرط مرزی ثابت استفاده شده است. شبیه سازی ها در دمای ۳۰۰ درجه کلوین و با ترموستات Nose-Hoover انجام شده است [۱۷]. گام زمانی برابر ۱ فمتو ثانیه در نظر گرفته شده است. انرژی سلول شبیهسازی ابتدا با روش کمینهسازی گرادیان انرژی کمینه شده است و سپس تـنش عمودی فشاری اعمال شده است. برای اعمال تنش ابتدا دو صفحه MoS₂ بالا و پایین در جهت عمودی ثابت شدهاند در حالیکه امکان حرکت در صفحه xy را دارا می باشند. سیس لایه MoS₂ بالا با سرعت ثابت در جهت پایین فشرده می شود که نتیجه آن کرنشی با نرخ برابر ۱۰۹ بر ثانیه می باشد [۱۸].

نتايج و بحث

مشخصه تنش-کرنش عمودی MoS₂ چند لایه با ترتیب پشتهسازی AB₁ و با تعداد لایه های مختلف در شکل ۲ نشان داده شده است. در ابتدا با افزایش کرنش، تنش به صورت خطی افزایش مییابد. سپس با افزایش بیشتر کرنش این افزایش غیر خطی شده و تقریبا سهموی می شود.

شکل ۲ : مشخصه تنش-کرنش MoS₂ چند لایه با ترتیب پشته سازی AB₁ و تعداد لایههای مختلف تحت تنش عمودی فشاری.

شکست با تعداد لایههای MoS₂ با ترتیب پشته سازی AB₁

 C_{33} بیانگر استحکام ساختار در جهت عمودی می باشد. این پارامتر می تواند با استفاده از قانون هوک ($3 \times c_{33} = \sigma$) در کرنشهای کوچک به دست آید. استفاده از مشخصه تنش-کرنش در کرنشهای کوچک از این جهت حائز اهمیت است که بتوان اطمینان حاصل کرد که در منطقه خطی قرار داریم و قانون هوک صادق است. بیشینه کرنش و تنشی که ساختار قبل از شکست و تغییر شکل می تواند تحمل کند با کرنش و تنش شکست مشخص

می شود. در شکل ۳ تغییرات C₃3 و کرنش و تنش شکست با تغییر تعداد لایه های MoS₂ دیده می شود. MoS₂ با تعداد لایه های بیشتر استحکام بیشتری دارد که این به دلیل تاثیر بیشتر برهم کنش وان در والس در این ساختارها می باشد. C₃3 به دست آمده برای این ساختار با مقدار به دست آمده در نتایج عملی یعنی o۲ گیگایاسکال تطابق خوبی دارد [۱۹].

شکلهای ٤ و ٥ مشخصه تنش – کرنش و خواص الاستیک ساختار AB₁ با ٤ لایه MoS₂ را در دماهای مختلف نشان میدهد. با افزایش دما نوسانات حرارتی اتمها بیشتر می شود و بنابراین باعث کاهش کرنش و تنش شکست می شود [۱۲]

شکل ٤ : مشخصه تنش-کرنش MoS₂ ٤ لایه با ترتیب پشته سازی AB₁ بر

شکل ۵. تغییرات الف) ثابت الاستیک C₃₃، ب) کرنش شکست و ج) تنش شکست MoS₂ کا لایه با ترتیب پشته سازی AB₁ با تغییرات دما منحنی تنش-کرنش تحت تنش عمودی فشاری برای ترتیبهای پشتهسازی شکل ۱، در شکل ۲ دیده می شود. در ساختارهای AA₃ و AB₃ اتمهای S لایه بالا روی اتمهای S لایه پایین قرار

 K. K. Kam and B. A. Parkinson, "Detailed photocurrent spectroscopy of the semiconducting group VIB transition metal dichalcogenides," *J. Phys. Chem.*, vol. 86, no. 4, (1982) 463–467.

مرجعها

- [2] K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, "Atomically Thin MoS2: A New Direct-Gap Semiconductor," *Phys. Rev. Lett.*, vol. **105**, (2010) 136805.
- [3] Liu, Kaihui, et al. "Evolution of interlayer coupling in twisted molybdenum disulfide bilayers," *Nature communications*, vol. 5, (2014) 4966.
- [4] P. Lu, X. Wu, W. Guo, and X. C. Zeng, "Strain-dependent electronic and magnetic properties of MoS2 monolayer, bilayer, nanoribbons and nanotubes," *Phys. Chem. Chem. Phys.*, vol. 14, no. 37, (2012) 13035-40.
- [5] S. Bhattacharyya and A. K. Singh, "Semiconductor-metal transition in semiconducting bilayer sheets of transition-metal dichalcogenides," *Phys. Rev. B*, vol. 86, (2012) 075454.
- [6] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, "Single-layer MoS₂ transistors," *Nat. Nanotechnol.*, vol. 6, (2011) 147-150.
- [7] L. Liu, S. Kumar, Y. Ouyang, and J. Guo, "Performance Limits of Monolayer Transition Metal Dichalcogenide Transistors," *IEEE Trans. Electron Devices*, vol. 58, no. 9, (2011) 3042-3047.
- [8] Y. Yoon, K. Ganapathi, and S. Salahuddin, "How good can monolayer MoS2 transistors be?," *Nano Lett.*, vol. 11, no. 9, (2011) 3768-3773.
- [9] B. Radisavljevic, M. B. Whitwick, and A. Kis, "Integrated circuits and logic operations based on single-layer MoS2,"*ACS nano*, vol. 5, no. 12, (2011) 9934-9938.
- [10] J.-W. Jiang, Z. Qi, H. S. Park, and T. Rabczuk, "Elastic bending modulus of single-layer molybdenum disulfide (MoS2): finite thickness effect," *Nanotechnology*, vol. 24, no. 43, (2013) 435705.
- [11] H. J. Conley, B. Wang, J. I. Ziegler, R. F. Haglund, S. T. Pantelides, and K. I. Bolotin, "Bandgap engineering of strained monolayer and bilayer MoS2," *Nano letters*, vol. 13, no.8, (2013) 3626-3630.
- [12] J. W. Jiang, and H. S. Park, "Mechanical properties of MoS2/graphene heterostructures," *Applied Physics Letters*, vol. 105, vol. 3, (2014) 033108.
- [13] S. Plimpton, "Fast parallel algorithms for short-range molecular dynamics," *Journal of Computational Physics*, vol. 117, no. 1, (1995) 1-19.
- [14] J. W. Jiang, H. S. Park, and T. Rabczuk, "Molecular dynamics simulations of single-layer molybdenum disulphide (MoS2): Stillinger-Weber parametrization, mechanical properties, and thermal conductivity," *Journal of Applied Physics*, vol. **114**, no. 6, (2013) 064307.
- [15] T. Liang, S. R. Phillpot, and S. B. Sinnott, "Parametrization of a reactive many-body potential for Mo–S systems," *Phys. Rev. B*, vol. **79**, no. 24, (2009) 245110 (Erratum: Phys. Rev. B, vol. **85**, (2012) 199903.)
- [16] H. Zhao, K. Min, and N. Aluru, "Size and chirality dependent elastic properties of graphene nanoribbons under uniaxial tension," *Nano Lett.*, vol. 9, no. 8, (2009) 3012-3015.
- [17] W. G. Hoover, "Canonical dynamics: equilibrium phase-space distributions," *Phys. Rev. A*, vol. **31**, no. 3, (1985) 1695.
- [18] N. Ghobadi, and M. Pourfath. "Vertical Tunneling Graphene Heterostructure-Based Transistor for Pressure Sensing." *IEEE Electron Device Letters*, vol. 36, no. 3, (2015) 280-282.
- [19] Y. Zhao, et al. "Interlayer breathing and shear modes in few-trilayer MoS2 and WSe2," *Nano letters*, vol. 13, no. 3, (2013) 1007-1015.

گرفتهاند که منجر به نیروی دافعه شدید و فاصله بین لایهای بزرگتر [۳] و در نتیجه کرنش شکست بزرگتر می شود. در ساختارهای AA₁ و AA و AB اتمهای S لایه بالا روی مرکز حقله شش گوشه لایه پایین قرار گرفتهاند که باعث نیروی دافعه کمتر و در نتیجه کاهش کرنش شکست می شود. تنش و کرنش شکست برای ساختارهای مختلف پشتهسازی در جدول ۳ دیده می شود.

شکل ٦ : مشخصه تنش-کرنش ٤ MoS₂ لایه با ترتیبهای پشتهسازی مختلف تحت تنش عمودی فشاری

جدول ۳ : کرنش و تنش شکست MoS₂ ٤ لایه با ترتیبهای پشتهسازی

مختلف

AB ₃	AB ₂	AB ₁	AA ₃	AA ₂	AA ₁	
•/721	•/\٤٨٤	•/1970	•/٢٨٦١	•/10	•/10	كــــرنش
						شكست
٣٤/١١	31/23	٨٤/٤٤	VV/0A	٣٤/٣٤	٣٤/٨٧	تــــــنش
						شكســـت
						(GPa)

نتيجه گیری

در این مقاله با استفاده از شبیه سازی دینامیک مولکولی اثر تعداد لایه ها، دما و ترتیب پشته سازی روی خواص الاستیک MoS₂ چند لایه تحت تنش عمودی فشاری مورد بررسی قرار گرفت. نتایج به دست آمده نشان داد که استحکام MoS₂ چند لایه با افزایش تعداد لایه ها افزایش و با افزایش دما کاهش می یابد. همچنین نیروی دافعه شدید بین اتم های S در ترتیب های پشته سازی AA₅ و AB منجر به افزایش فاصله بین لایه ای و کرنش شکست در این ساختارها می شود. از تحقیق انجام شده این نتیجه به دست می آید که با تغییر دما، ترتیب پشته سازی و تعداد لایه های MoS₂ می توان خواص مکانیکی این ماده را به شدت تغییر داد.