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The current outbreak dwarfs the largest historical outbreaks in Africa, which were rural and relatively 
easy to control. Ebola has now spread to dense urban areas, where control is harder to achieve.
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Western Africa ebola outbreak, 2014

28 646 cases  
11 323 death



How fast the virus is spreading ? 
What can we do to stop the epidemic? 

Western Africa ebola outbreak, 2014
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Mathematical description of the 
essential mechanisms underling the 
epidemic spread 

-disease progress within an 
individual 
-contagion  
-human contacts and behaviour 

mechanistic modelling
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time of	
infection

time since	
infection

susceptible latent infectious recovered

incubation diseased medical	
status

infection	
status

pathogen

immune 
response

disease progress

mechanistic modelling

[Keeling & Rohani, Modeling Infectious Diseases (2008)]
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directly transmitted 
- airborne 
- physical contact 

(hand shake) 
- sexual contact

contagion

NON directly transmitted 
- vector-borne 
- food-born 
- fomites

mechanistic modelling

[Keeling & Rohani, Modeling Infectious Diseases (2008)]
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relatives; colleagues; partners; random encounters (public 
transports, …)

mechanistic modelling

[Keeling & Rohani, Modeling Infectious Diseases (2008)]



Kermack & McKendrick model 

�

µ

k

infectioussusceptible recovered

contacts
transmission per contact

k�
I(t)

N

I(t)S(t) R(t)

[Kermack & McKendrick Proc Roy Soc A 1927, Keeling & Rohani, Modeling Infectious Diseases (2008)]



µ

infectioussusceptible recovered

k�
I(t)

N

I(t)S(t) R(t) dtR(t) = µI(t)

dtI(t) = k�
I(t)

N
S(t)� µI(t)

dtS(t) = �k�
I(t)

N
S(t)

Kermack & McKendrick model 

S(t) + I(t) +R(t) = N

[Kermack & McKendrick Proc Roy Soc A 1927, Keeling & Rohani, Modeling Infectious Diseases (2008)]



I(t) ⇠ e(��µ)t

dtR(t) = µI(t)

dtI(t) = k�
I(t)

N
S(t)� µI(t)

dtS(t) = �k�
I(t)

N
S(t)

~N
Kermack & McKendrick model 

[Kermack & McKendrick Proc Roy Soc A 1927, Keeling & Rohani, Modeling Infectious Diseases (2008)]



Exponential growth
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dtR(t) = µI(t)

dtI(t) = k�
I(t)

N
S(t)� µI(t)

dtS(t) = �k�
I(t)

N
S(t)

~N
Kermack & McKendrick model 

I(t) ⇠ e(k��µ)t

k� � µ > 0



epidemic threshold

epidemic extinction
virus death

epidemic spread
virus survival
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Exponential growthk� � µ > 0



basic reproductive ratio
Exponential growthk� � µ > 0

k�

µ
> 1

R0

average number of individuals infected by an 
infected individual during her/his infectious 
period in a fully susceptible population.



basic reproductive ratio
Exponential growthk� � µ > 0

k�

µ
> 1

R0

outbreak R0 Ref
H1N1 pandemic (2009) 1.2 - 2.0 [Fraser et al. Science 2009]

Zika (2015) 2.6 - 4.0 [Kucharski et al. PLoS Negl Trop Dis 
2016]

smallpox 3.5 - 6.0 [Gani et al. Nature 2001]

Measles 16 - 18 [Anderson & May et al. Science 1982]



R0= 1.51 (1.50-1.52) R0= 1.59 (1.57-1.60)R0= 2.53 (2.41-2.67)

Exponential growthk� � µ > 0

k�

µ
> 1

R0

[Althaus PLoS Curr. 2014]

basic reproductive ratio



R0= 1.51 (1.50-1.52) R0= 1.59 (1.57-1.60)R0= 2.53 (2.41-2.67)

Exponential growthk� � µ > 0

k�

µ
> 1

R0

[Althaus PLoS Curr. 2014]

Projected 1.4 million cases by January 20, 2015
[Meltzer, MMWR Suppl., 65  2016]

epidemic forecast



epidemic forecast
Projected 1.4 million cases by January 20, 2015
[Meltzer, MMWR Suppl., 65  2016]

- disregarding contact structure yields a 
larger number of cases 

- prediction based on the hypothesis of no-
interventions



epidemic containment

*
Containment of the Ebola outbreak 
- Funeral ceremony  
- Contact tracing 
- Quarantine  
- Ring vaccination

epidemic extinction
virus death

epidemic spread
virus survival
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epidemic containment
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- Contact tracing 
- Quarantine  
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µk�
I(t)

N

I(t)S(t) R(t)

vaccinated

modeling vaccination

N = S(t) + I(t) +R(t) + V ! S(t) = N � I(t)�R(t)� V

V



µk�
I(t)

N

I(t)S(t) R(t)

vaccinated

modeling vaccination

N = S(t) + I(t) +R(t) + V ! S(t) = N � I(t)�R(t)� V

V

dtI(t) = k�
I(t)

N
(S(t)� V )� µI(t)

dtI(t) = k�
I(t)

N
(1� v)� µI(t)

v =
V

N



µk�
I(t)

N

I(t)S(t) R(t)

vaccinated

modeling vaccination

V

dtI(t) = k�
I(t)

N
(S(t)� V )� µI(t)

dtI(t) = k�
I(t)

N
(1� v)� µI(t)

v =
V

N

I(t) = e[�(1�v)�µ]t

Re↵ = R0(1� v)



modeling vaccination

vc =
R0 � 1

R0

epidemic extinction
virus death

epidemic spread
virus survival

1 R0
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COMPLEXITY

homogeneous 
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epidemic containment

[Aielli et al, BMC med  2016; Merler et al PLOS NTD 2016]

ring vaccination: the contacts and contacts 
of contacts of each index case are identified 
and vaccinated

agent based model for Pujehun 
district of Sierra Leone  
- creation of a synthetic population  
- individual spatial distribution 
- demography 
- household compositions 
- link among households as typical 

in rural Africa



epidemic containment

[Aielli et al, BMC med  2016; Merler et al PLOS NTD 2016]

ring vaccination: the contacts and contacts 
of contacts of each index case are identified 
and vaccinated

agent based model for Pujehun 
district of Sierra Leone  
- creation of a synthetic population  
- individual spatial distribution 
- demography 
- household compositions 
- link among households as typical 

in rural Africa

- 2 days identify the contacts and 
obtain consent and administer 
vaccine 

- 4 days to develop immunity

EPP = 1� pI
pNI
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COMPLEXITY
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compartmental models
complex disease unfolding: the population is divided in 
classes according to diseases stages

S I R

S I S

S E RI



compartmental models

S I R

S I S

S E RI

complex disease unfolding: the population is divided in 
classes according to diseases stages



compartmental models

S I R

different contacts rates within/across age 
classes  → different infections rates

complex population structure: further division in classes 
based on host characteristic of epidemiological 
relevance



University, UK ~ 100 participant  
[Edmund et al Pro R Soc Lond B (1997)] 

8 countries in Europe ~ 7000 
participants 
[Mossong et al PLoS Med (2008)]

social contacts by age
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conclusion
- simple models can be useful  

- key concepts: epidemic threshold and R0 

- agent based models: 😊 most realistic, allow the 
exploration of possible intervention scenarios, 😞 
data & computational intensive 

- in some cases complex compartmental models can be 
a good compromise
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relatives; colleagues; partners; random encounters (public 
transports, …)

key ingredient:  
human to human contacts



hospital

school

work

home

COMPLEXITY

homogeneous 
mixing agent basednetwork population 

structure



[Auerbach, et al the American 
Journal of medicine 76, 487 
1984] 

HIV spread

early network data



nodes: boys & girls 
links: dating

high school dating
[P. S. Bearman, et al., AJS 110, 44-91 2004] 

early network data



network properties

- small world 

- high clustering 

- heterogeneous contact behaviours 

- presence of communities 

- degree-degree correlations 



network properties:  
heterogeneous connectivity

[Liljeros et al, Nature 411 2001] 

Swedish survey with 2810 respondents

P (k) / k�↵, ↵ ' 2.3
#partners in the last year

power law distribution

2 < ↵ < 3 ) hk2i ! 1

-variance is big 

-existence of hubs



modelling epidemic on networks

S I S
� µ

S I R
� µ

�



S I

heterogeneous mean field approach

P (k)
Degree distribution

[Pastor-Satorras & Vespignani PRL 2001, review :Pastor Satorras et al. Rev Mod Phys 2015]

k = 1k = 2k = 3 k = ....



µ

infectioussusceptible recovered

Sk(t) Ik(t) Rk(t)

?

k = 1k = 2k = 3 k = ....

what is the probability that a node with degree k is 
linked to an infected node of whatever degree k’  ?

heterogeneous mean field approach



k

number of possible  
contacts:

k

k

k’

probability of  
contact with k’:

P (k0|k)

k

k’

number of infectious 
within the k’-class:

Ik

X X� X

Sk(t) Ik(t)

?
heterogeneous mean field approach

�k
X

k0

P (k0|k)Ik0force of infection=



P (k0|k) = k0
P (k0)

hki

heterogeneous mean field approach
If I make a connection at random I will 
do it more likely with someone that is 
very social (more stubs)

?

�k
X

k0

k0
p(k0)

hki Ik0

dIk
dt

= �µIk(t) + Sk(t)�k
X

k0

k0
p(k0)

hki Ik0

force of infection=



vanishing epidemic threshold in the infinite size limit!

...

dIk
dt

= �µIk(t) + Sk(t)�k
X

k0

k0
p(k0)

hki Ik0

�
hk2i
hki � (µ+ �)hkiExponential growth

heterogeneous mean field approach

[Pastor-Satorras & Vespignani PRL 2001, review :Pastor Satorras et al. Rev Mod Phys 2015]



heterogeneity favours epidemic spreading

[Pastor-Satorras & Vespignani PRL 2001, review :Pastor Satorras et al. Rev Mod Phys 2015]

heterogeneous mean field approach



immunisation threshold   gc = 1

random immunisation is 
totally ineffective β (1− g) ≤ βc

immunisation in heterogeneous 
networks
imagining of immunising a fraction g of individuals

targeted immunisation is 
extremely effective

[Pastor-Satorras & Vespignani, PRE 65, 036104 (2002)] 
[Dezso & Barabasi cond-mat/0107420; Havlin et al. preprint (2002)]



[Cohen et la PRL 2003; Christakis & Fowler PLoS ONE 2010]

my friend has more friends than me …

average nearest neighbour degreenn,i =
1

ki

X

j2V(i)

kj

nn,i =
X

k0

k0P (k0|ki) =
X

k0

k02P (k0)

hki

nn,i =
hk2i
hki

P (k0|k) = k0
P (k0)

hki

immunisation in heterogeneous 
networks



my friend has more friends than me …

nn,i =
hk2i
hki

choose a person at random, 
immunise one of his friends

[Cohen et la PRL 2003; Christakis & Fowler PLoS ONE 2010]

friends also as sensor to monitor an outbreak

immunisation in heterogeneous 
networks



network properties

- small world 

- high clustering 

- heterogeneous contact behaviours 

- presence of communities 

- degree-degree correlations 



Aij

quenched mean field approach

S I

Adjacency matrix

[Wang et al. SRDS 2003, Gómez et al. EPL 2010]

S I S
� µ

accounting for the whole network knowledge 



Aij

quenched mean field approach

S I

Adjacency matrix

pi(t) = Prob(i is infectious)

[Wang et al. SRDS 2003, Gómez et al. EPL 2010]

S I S
� µ



Aij

S I

Adjacency matrix

pi(t) = Prob(i is infectious)

pi(t+ 1) = 1� [1� (1� µ)pi(t)]⇧j [1� �Ajipj(t)]�

quenched mean field approach

[Wang et al. SRDS 2003, Gómez et al. EPL 2010]

Markov chain
Prob(i is infectious, j is infectious) = pipj



Aij

S I

Adjacency matrix

pi(t) = Prob(i is infectious)

prob i is not infectious 
from before

prob i does not get infected 

pi(t+ 1) = 1� [1� (1� µ)pi(t)]⇧j [1� �Ajipj(t)]�

quenched mean field approach

[Wang et al. SRDS 2003, Gómez et al. EPL 2010]

Markov chain
Prob(i is infectious, j is infectious) = pipj



Aij

S I

Adjacency matrix

pi(t) = Prob(i is infectious)

pi(t+ 1) = 1� [1� (1� µ)pi(t)]⇧j [1� �Ajipj(t)]�

linearize
p(t+ 1) = (1� µ+ �A†)p(t) +O(||p(t)||2)�

quenched mean field approach

[Wang et al. SRDS 2003, Gómez et al. EPL 2010]

Markov chain
Prob(i is infectious, j is infectious) = pipj



Aij

S I

Adjacency matrix

pi(t) = Prob(i is infectious)

spectral radius 
(largest eigenvalue)

✓
�

µ

◆

critical

=
1

⇢[A]

�

quenched mean field approach

[Wang et al. SRDS 2003, Gómez et al. EPL 2010]

p(t+ 1) = (1� µ+ �A†)p(t) +O(||p(t)||2)�



[Wang et al. SRDS 2003; Gómez et al. 2010]

exact structure 
of the network

coarse graining - 
statistical properties

heterogeneous 
mean field 
approximation

quenched mean 
field 
approximation

[Pastor-Satorras & Vespignani PRL 2001, 
Pastor Satorras et al. Rev Mod Phys 2015]

-fully account for network 
information 
-comparison with null models for 
assessing relevant properties 
-test possible interventions

-simple transparent formula 
-analytical understanding of 
immunisation processes   
-full network information not 
available in many cases

[Castellano, Pastor-Satorras PRL 2010]

quenched vs. heterogeneous



TIME

temporal dimension of networks



internet mediated prostitution

[LEC. Rocha, et al, PNAS 2009] 

sexual contacts between 6,624 escorts and 10,106 sex buyers extracted from an 
online community

recent network data



RFID technology

[Salathé et al. Proc Natl Acad Sci 2010; Sociopatterns.org - Stehlé et al. BMC Medicine 
2011; Kiti et al. EPJ Data Science 2016; Ozella et al. PLoS ONE 2018; iBird - Obadia et 
al. PLoS Comp Bio 2015]

schools - workplaces - hospitals - museums - conferences -
households - rural Africa

face-to-face contacts

recent network data



[Bajardi, PLoS ONE (2011)]

bovine displacement among farms

recent network data



temporal dimension of networks
generative network modelsin the 90’s



preferential attachment model: rich gets richer
generative network models

⇧(ki) =
kiP
j kj

- m0 initial nodes  
- each time step: a new node enters with m stubs
- probability it connects with a node with degree     : ki

P (k) =
2m2

k3
degree distribution in the stationary limit:

[Barabasi, Albert, Science, 1999]

in the 90’s

generative network models



preferential attachment model: rich gets richer

the model explains the topology of the network  but 
the network dynamics is decoupled from the dynamical 
process unfolding on the top of the network

[Barabasi, Albert, Science, 1999]

generative network models
generative network modelsin the 90’s



time scale separation not applicable 
in many cases

internet mediated prostitution
[LEC. Rocha, et al, PNAS 2009] 

HIV 
SYPHILIS

temporal dimension of networks



temporal network modelsNowadays

temporal dimension of networks



activity driven model
temporal network models

-               : distribution of the activity potential

-   activity potential        : number of activation in a xi �t

- a node activates with rata                         and forms  
m connections

F (x)

[Perra et al, Sci Rep 2012] 

ai = ⌘xi

Nowadays

temporal dimension of networks



activity driven model
[Perra et al, Sci Rep 2012] 

heterogenous topology in the aggregated network, over a 
window T, result from a heterogeneous activity potential PT (k) ⇠ F


k

Tm⌘

�

activity driven model
temporal network modelsNowadays



activity driven model
[Perra et al, Sci Rep 2012] 

activity potential affects spreading and the epidemic threshold 

connection from any other infected individual (summing over all
different classes), while the last term takes into account the probabil-
ity that a susceptible, independently of his activity, gets a connection
from any infected active individual. The above equation can be
solved as shown in the material and methods section, yielding the
following epidemic threshold for the activity driven model:

b

m
w 2 ah i

ah iz
ffiffiffiffiffiffiffiffi
a2h i

p : ð4Þ

This result considers the activity rate of each actor and therefore
takes into account the actual dynamics of interactions; the above
formula does not depend on the time-aggregated network repres-
entation and provides the epidemic threshold as a function of the
interaction rate of the nodes. This allows to characterize the spread-
ing condition on the natural time scale of the combination of the
network and spreading process evolution.

Discussion
We have presented a model of dynamical networks that encodes the
connectivity pattern in a single function, the activity potential dis-
tribution, that can be empirically measured in real world networks

for which longitudinal data are available. This function allows the
definition of a simple dynamical process based on the nodes’ activity
rate, providing a time dependent description of the network’s con-
nectivity pattern. Despite its simplicity, the model can be used to
solve analytically the co-evolution of the network and contagion
processes and characterize quantitatively the biases generated by
time-scale separation techniques. Furthermore the proposed model
appears to be suited as a testbed to discuss the effect of network
dynamics on other processes such as damage resilience, discovery
and data mining, collective behavior and synchronization. While we
have reduced the level of realism for the sake of parsimony of the
presented model, we are aware of the importance of analyzing other
features of actor activity such as concurrency, persistence and differ-
ent weights associated with each connection. These features must
necessarily be added to the model in order to remove the limitations
set by the simple random network structures generated here and
represent interesting challenges for future work in this area.

Methods
Datasets. We considered three different dataset: the collaborations in the journal
‘‘Physical Review Letters’’ (PRL) published by the APS, the message exchanged on

Figure 3 | Visualization and degree distributions of the proposed network model considering different aggregated views. We fix N 5 5000, m 5 2, g 5
10, F(x) / x2c with c 5 2.8, # x # 1 with 5 1023. We plot the network obtained after one time step in the first column, the network obtained after
integrating over 10 iterations in the second column, and the network obtained after integrating over 20 iterations in the last column. Interestingly, even
though the model is random and markovian by construction, we observe a behavior qualitatively similar to the case of PRL: the single time window yields
a sparse and poorly connected network with a trivial degree distribution. When larger time scales are considered, heterogeneous connectivity patterns
start to emerge as seen by the corresponding degree distributions. In each visualization the size and color of the nodes is proportional to their degree.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 2 : 469 | DOI: 10.1038/srep00469 5

spreading dynamics 

epidemic threshold

activity driven model
temporal network modelsNowadays



temporal network properties

- activation rate 

- turn over 

- inter-contact time 

- memory

temporal network modelsNowadays



multilayer formalism

account for the  
full temporal dimension

quenched mean field 
approach[De Domenico et al PRX 2013, Kivelä et al Comp Networks 2014]

[Granell et al PRL 2013, Cozzo et al PRE 2013, Sanz et al PRX 2014]

[Valdano et al PRX 2015]



infection propagator approach

i

j

i

j

i

j

i

j

time

A1 A2 A3 A4

i

j

i

j

i i

j j

[Scholtes et al 
Nature Com 2015]

[Valdano et al PRX 2015]

λ μ
S I S



M =

�

������

0 1� μ + λA1 0 · · · 0
0 0 1� μ + λA2 · · · 0
...

...
... · · ·

...
0 0 0 · · · 1� μ + λAT�1

1� μ + λAT 0 0 · · · 0

�

������

time

(1-μ)δij

λAtij

A1,ij A2,ij A3,ij A4,ij

i

j

i

j

i i

j j

NT x NT supra-adjacency matrix

N x N blocks
[Valdano et al PRX 2015]

λ μ
S I S

infection propagator approach



ρ[P(λthr,μ)] = 1

dim = NT

threshold on 
temporal network

threshold on 
STATIC network

epi threshold 
ρ[M(λthr,μ)] = 1

dim = N

P = (1-μ + λA1) (1-μ + λA2) ··· (1-μ + λAT)

[Powell, arXiv, 2011]

[Lentz et al, PRL 2013]

[Valdano et al PRX 2015]

infection 
propagator

infection propagator approach



conclusion

- Network topology affect spreading 

- Degree heterogeneity lower the epidemic threshold 

- heterogenous mean field approach vs. quenched 
mean field approach 

- network temporal dimension and interplay with 
spreading process 

- activity driven vs. infectious propagator approach



Outline

-modeling an epidemic 

-epidemics on networks  

-epidemics in space 

-interacting epidemics 

-computer simulations



Western Africa ebola outbreak, 2014



Western Africa ebola outbreak, 2014

risk for France???



black death,14th century



H1N1 influenza pandemic, 2009

H1N1 influenza pandemic, 2009



mobility network data

[Hufnagel et al. PNAS 2004; Colizza et al. 
PLoS Med 2007; Balcan et al. PNAS 2009] 

air traveling  
data collected by the 
International Air Trasport 
Association



[Balcan, Colizza et al. PNAS (2009)]

commuting data 
census data of different 
countries

mobility network data



González, Hidalgo, Barabasi, Nature 2008 

[Gonzalez et al, Nature (2008)]

mobility network data

local mobility 
mobile phone data



peripheral 	
airports

Frankfurt,	
318 connections

low traffic	
airports

Tokyo-Sapporo	
17000 p/day

number of connections number of passengers

topological heterogeneity traffic heterogeneity

mobility network properties
… heterogeneous!



hospital

school

work

home

COMPLEXITY

homogeneous 
mixing agent basednetwork metapopulationpopulation 

structure



metapopulation models: a 
compromise



metapopulation models: a 
compromise



metapopulation models: a 
compromise

local populations: 
§ discrete entities in space: patches 
§ interaction between populations : coupling, flows



movement of  
individuals

pop j 

pop i 

wij

wji

pop l

wjl

wlj

infection 
dynamics

metapopulation models

[Hanski, I. & Gaggiotti, Elsevier, Academic Press, 2004]



SIR metapopulation models

pop j 

pop i 

wij

wji

S(t) 
I(t) 
R(t) 
N(t)

V:  # populations 
Si(t) 
Ii(t) 
Ri(t) 
Ni(t) = Si(t) + Ii(t) + Ri(t)

SIR

SIR

global 
variables



Measure	of	in-flow	and	
out-flow	of	people	in		
compartment	X

SIR metapopulation models



coupling

pop j 

pop i 

wij
wil

pop l

pop m

wim

probability for an individual in i 
to travel from i to j ?

for all compartments

Ni  live in i 
wij travel from i to j



coupling

pop j 

pop i 

wij
wil

pop l

pop m

wim

Ni  live in i 
wij travel from i to j

                  probability travel 
                     from i to j

average number of individuals in 
compartment X in i traveling from i to j ?



SIR metapopulation models



* global invasion threshold 
* spatial propagation & predictability



global invasion threshold 

which are the condition for a 
local outbreak to spread at 
global proportion?



subpopulation 
level R*

R*1
containment spatial invasion

[Colizza & Vespignani, PRL 2007, JTB 2008; 
Cross, et al. JRSoc Interface 2007]

coarse graining 
following the spread from one 
subpopulation to another 

mapping the spreading dynamics among 
subpopulation into the spreading on a 
network

individual 
level R0

R01

virus extinction epidemic

global invasion threshold 



0"

1"

2"

3"

Dn: diseased subpopulations at generation n 

- Invasion dynamics at the 
subpopulation level 

- branching process approximation

[Colizza & Vespignani, PRL 2007, JTB 2008]

global invasion threshold 



invasion threshold: homogeneous 
system 

[Colizza & Vespignani, PRL 2007, JTB 2008]

i
j

Pext =

✓
1

R0

◆�ij

total # infectious individuals sent from i to j during the local outbreak

probability of early extinction

Dn = (hki � 1) (1� Pext)

 
1�

n�1X

m=0

Dn

V

!
Dn�1

�ij =
pR1
µ

p traveling probability along each link

hki # connection of each subpopulation



invasion threshold: homogeneous 
system 

[Colizza & Vespignani, PRL 2007, JTB 2008]

R⇤ = (hki � 1) (1� Pext)

Dn = (hki � 1) (1� Pext)

 
1�

n�1X

m=0

Dn

V

!
Dn�1
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invasion threshold: heterogeneous 
system 

[Colizza & Vespignani, PRL 2007, JTB 2008]



invasion threshold: heterogeneous 
system 

[Colizza & Vespignani, PRL 2007, JTB 2008]



mob
ilit

y p
ara

mete
rs

infection parameters

invasion threshold: increasingly 
realistic models

commuting and recurrent mobility 
patterns: beyond the markovian 
assumption 
[Balcan & Vespignani Nat Phys 2011, Belik et al PRX 
2011] 

heterogeneous travel duration 
[Poletto et al Sci Rep 2012] 

heterogeneity in travel frequency: 
children are more social but travel less 
[Apolloni et al BMC Inf Dis 2013] 

behavioural response to the presence 
of a disease 
[Meloni et al Sci Rep 2011]



* global invasion threshold 
* spatial propagation & predictability



h
1� (1� p)I(t dt)

i

p ! 0

P (tseeding = t dt) =
t�1Y

s=1

(1� p)I(s dt) ⇥
h
1� (1� p)I(t dt)

i

P (tseeding = t) = p I(t)e�p
R t
0 I(s)ds

I(t) ⇠ eµ(R0�1)t

p

probability that an infectious arrives in j at time t:

i j

probability that the first infectious arrives in j at time t:

spatial propagation



I(t) ⇠ eµ(R0�1)t

p

i j

spatial propagation

P (tseeding = t) = p I(t)e�p
R t
0 I(s)ds

P (tseeding = t) = p eate�paeat
a = µ(R0 � 1)

Gumbel distribution

htseedingi '
1

a
ln(p a)



I(t) ⇠ eµ(R0�1)t

p

i j

spatial propagation: travel 
restrictions

I reduce the traffic with the epidemic origin: is it 
effecting in containing or delaying the propagation?

�htseedingi = �1

a
ln(↵)

rescaled of a factor ↵p

[Gautreau et al JTB 2008; Bajardi et al PLoS ONE 2011; Hollingsworth et al Nature 
Med 2006; Scalia Tomba et al Math Biosci 2008]



<1%

AFFECTED
AREA

FLIGHT
SUPPRESSION

TRAVEL BAN &
BORDER CLOSURE

[Poletto, Eurosurveillance 2014]

how did restriction in mobility 
affect spreading?EBOLA

2014



<1%

AFFECTED
AREA

FLIGHT
SUPPRESSION

TRAVEL BAN &
BORDER CLOSURE

[Poletto et al, Eurosurveillance 2014]

how did restriction in mobility 
affect spreading?EBOLA

2014

overall reduction with Western Africa = ~60%



<1%

AFFECTED
AREA

FLIGHT
SUPPRESSION

TRAVEL BAN &
BORDER CLOSURE

<1%

AFFECTED

AREA

DELAY

TRAVEL

REDUCTION

66%

27d
71%

30d

41%

11d

8%

0d

10%

2d 22d
42%

how did restriction in mobility 
affect spreading?EBOLA

2014

[Poletto et al, Eurosurveillance 2014]



spatial propagation: effective 
distance among two nodes

[Brockmann Lab, http://rocs.hu-berlin.de/projects/hidden/index.html]

ln(pij)

effective distance 
along the link

[Gautreau et al JTB 2008; 
Brockmann, Helbing, Science 2013]

http://rocs.hu-berlin.de/projects/hidden/index.html%5D


spatial propagation: effective 
distance among two nodes

ln(pij)

effective distance 
along the link

[Gautreau et al JTB 2008; 
Brockmann, Helbing, Science 2013]

[Brockmann Lab, http://rocs.hu-berlin.de/projects/hidden/index.html]

good news: existence of 
pathways ! 
risk assessment analysis, ...
[Colizza, et al PNAS (2006)]

http://rocs.hu-berlin.de/projects/hidden/index.html%5D


middle east respiratory syndrome 
2012-2015 



International spread follows 
simple rules

201520142013

FR1

UK1

TUN1

IT1

MA1

US1 NETH1

NETH2

A1 TUR1

PH1

SK1

TH1

PH2G1

EG1

AL1

AL2

US2 GE1

TUN2

CH1

A imported from Middle East
imported from other countries

B
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A

predicted
observed

imported cases

B

risk of importation
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[Poletto et al. BMC Inf Dis 2016] 

computed risk of exportation from 
incidence in Middle East + monthly air-traffic



modelling worldwide spread of 
epidemics

52  major cities:  
spread of 1968 -1969  
H3N2 pandemic from 

Hong Kong 
[Rvachev, Longini, Math. Biosci. 1985] 

~ 3000 - 4000 cities:  
spread of SARS, 2009 H1N1 
pandemic, MERS, Ebola, 
hypothetical pandemic scenarios 
[Hufnagel et al. PNAS 2004; Colizza et al. PLoS Med 2007; Balcan 
et al. PNAS 2009; Poletto et al. Eurosurveillance 2014; Gomes et al. 
PLoS Curr 2014 ] 



EBOLA
2014

GLEaM: GLobal Epidemic and Mobility 
model

MERS
2012

H1N1
2009

SARS
2003

[www.gleamviz.org  Balcan et al. PNAS 2009]

http://www.gleamviz.org


GLEaM: demography and mobility

Population Distribution	

§ resolution 15’x15’ arc	
§ data source: SEDAC  
(Columbia University) 
§ tessellation: geographical 
census areas

World Airport Network	

§ 3362 airports  in 220 
countries	
§ 16842 connections with 
travel flows	
§ more than 99 % of the 
global commercial traffic	
§ data source:  IATA, OAG 

Commuting Network	

§ census data for >40 
countries in 5 continents 
§ different admin levels 
§ change of resolution 
scale: from admin 
boundaries to geo census 
areas

[www.gleamviz.org  Balcan et al. PNAS 2009]

http://www.gleamviz.org


GLEaM: epidemic model

H1N1 pandemic:

Ebola:

[www.gleamviz.org  Balcan et al. PNAS 2009]

http://www.gleamviz.org


H1N1 influenza pandemic 2009

[www.gleamviz.org  
Balcan et al. BMC Med 2009]

http://www.gleamviz.org
http://www.gleamviz.org


end of April mid May mid June .... .... ....         Oct/Nov/Dec

... ... ???

[www.gleamviz.org  Balcan et al. BMC Med 2009]

H1N1 influenza pandemic, 2009

http://www.gleamviz.org


international propagation driven by the epidemic 
in the source area 

exploit knowledge of the international 
propagation to infer the spread in the source area

[Poletto et al. Eurosurveillance 2014; Poletto 
et al. Epidemics 2016;  also: Cauchemez, et 
al. Lancet Infect Dis 2014; Balcan et al. BMC 
Med 2009, Fraser et al. Nature 2009]

H1N1 influenza pandemic, 2009



[www.gleamviz.org  
Balcan et al. BMC Med 2009]

H1N1 influenza pandemic, 2009

http://www.gleamviz.org
http://www.gleamviz.org


[www.gleamviz.org  
Balcan et al. BMC Med 2009]

H1N1 influenza pandemic, 2009

http://www.gleamviz.org
http://www.gleamviz.org


conclusion

- metapopulation model simple enough to allow for 
mathematical understanding  

- yet enough accurate to allow for realistic description of 
outbreaks 

- international travel: highly populated patched 
connected by relatively small mobility fluxes 

- out from this regime modelling spatial spread more 
complicated & lack of data



Outline

-modeling an epidemic 

-epidemics on networks  

-epidemics in space 

-interacting epidemics 

-computer simulations



hospital

school

work

home

COMPLEXITY

homogeneous 
mixing agent basednetwork metapopulationpopulation 

structure



hospital

school

work

home

COMPLEXITY

homogeneous 
mixing 

single strain agent basednetwork metapopulationpopulation 
structure

C
O
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Y

multi strain

Host
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multistrain & influenza

can we increase the 
impact of vaccination?

[http://www.cdc.gov/flu/professionals/vaccination/effectiveness-studies.htm]

- 3 circulating subtypes + 
continuous mutation 

- ~ billion cases annually (~3–5 
million severe illness) 

- ~300,000–500,000 deaths  

- vaccine effectiveness:  
23% (in 2014-15) 
47% (in 2015-16) 

http://www.cdc.gov/flu/professionals/vaccination/effectiveness-studies.htm


[Weinberger et al. the Lancet 2011]

multistrain & pneumococcal disease  

\

- S. pneumoniae major 
cause of meningitis, 
sepsis, pneumonia 

- ~90 serotypes 

- vaccine target few of 
them

strain 
replacement?



HIV & TB

- risk of TB ~16-27 
times greater in 
people living with HIV 

- 10.4 million cases of 
TB disease globally, 
1.2 million [11%] 
among HIV patient



multi strain: fundamental questions

COEXISTENCE
dominance/co-dominance

EPIDEMIOLOGICAL IMPACT
cooperation

competition

?



a simple model with 2 strains

suscep

strain 1

strain 2

strain1&2
�1

�2
µ2

µ1

⇠�1

⇠�2

µ2

µ1

⇠ > 1

⇠ < 1

cooperative

competitive



competitive diseases:  
winner takes it all!

[Prakash et al, Proceedings of the 21 WWW 2012]

suscep

strain 1

strain 2

�1

�2
µ2

µ1

⇠ = 0 mutual exclusion
Aij adjacency matrix

⇢ [A] spectral radius

⇢ [A]�/µ strength of the strain



competitive diseases:  
winner takes it all!

[Prakash et al, Proceedings of the 21 WWW 2012]

no co-existence 
the stronger strain always wins

if the 2 are equal  
still only 1 strain survives



cooperative diseases

- abrupt phase transitions

[Cai et al Nature Phys 11 936 2015; Chen et al New J Phys 19 103041 2017]

⇠ > 1

suscep

strain 1

strain 2

strain1&2
�

⇠�

µ

µ

µ

µ
�
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cooperative diseases

- abrupt phase transitions 

- hysteresis: epidemic threshold is 
different from the eradication 
threshold

[Cai et al Nature Phys 11 936 2015; Chen et al New J Phys 19 103041 2017]

⇠ > 1

suscep

strain 1

strain 2

strain1&2
�

⇠�

µ

µ

µ

µ
�

⇠�



cooperative diseases

- abrupt phase transitions 

- hysteresis: epidemic threshold is 
different from the eradication 
threshold  

- the behaviour depends on the 
network topology

[Cai et al Nature Phys 11 936 2015; Chen et al New J Phys 19 103041 2017]

⇠ > 1

suscep

strain 1

strain 2

strain1&2
�

⇠�

µ

µ

µ

µ
�

⇠�



[Sanz et al PRX 4, 04100 2014]

- heterogeneous mean-field approximation 

- network underlying spreading is disease-specific 

- accounting for a wide array of possible 
interaction 

- second disease introduced at a certain time 

- both SIS & SIS and SIR & SIR

TABLE I. Definition of model parameters.

Parameter Dynamical meaning

λ1 Baseline infectiousness of disease 1
λ2 Baseline infectiousness of disease 2
μ1 Baseline recovery rate of disease 1
μ2 Baseline recovery rate of disease 2
βa1 Variation of disease 1 infectiousness due to the

fact that the susceptible individual exposed
to disease 1 is infected with disease 2

βa2 Variation of disease 2 infectiousness due to the
fact that the susceptible individual exposed
to disease 2 is infected with disease 1

βb1 Variation of disease 1 infectiousness due to the
fact that the spreader is also infected with
disease 2

βb2 Variation of disease 2 infectiousness due to the
fact that the spreader is also infected with
disease 1

η1 Variation of disease 1 recovery rate for individuals
also infected with disease 2

η2 Variation of disease 2 recovery rate for individuals
also infected with disease 1

interacting diseases: general framework



[Sanz et al PRX 4, 04100 2014]

introduction 
strain 1

introduction 
strain 2 
cooperative

introduction 
strain 2 
competitive

interacting diseases: general framework



slow strain fast strain

Time Time

In
ci

de
nc

e

In
ci

de
nc

e

suscep

slow 
strain

fast 
strain

recov

- SIR 
- same R0  

- different infectious period → 
- full cross-immunity

⌧s > ⌧f

competing diseases in space



slow strain fast strain

Time Time

In
ci

de
nc

e

In
ci

de
nc

e

suscep

slow 
strain

fast 
strain

recov

- SIR 
- same R0  

- different infectious period → 
- full cross-immunity

⌧s > ⌧f

- the 2 strains originate from 
different patches 

- stochastic simulations of the 
outbreak

role of     on 
dominance/co-dominance?

competing diseases in space
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[Poletto et al. PLoS Comp Bio 2013]

competing diseases in space



-              infection duration 
-R0

scale of individuals

D(t) ⇠ e
1
T (R⇤�1)t

D = # diseased subpop

scale of subpopulations

I(t) ⇠ eµ(R0�1)t

µ�1 =

-             outbreak duration 
-R*

T =

[Poletto et al. PLoS Comp Bio 2013]

competing diseases in space



increasing function of µ�1 Rs
⇤ > Rf

⇤R⇤

subpop i

subpop j

subpop k

large p:

small p:

Rs
⇤ and Rf

⇤ >> 1
fast strain reaches more rapidly new 
subpopulations

Rs
⇤ > Rf

⇤ percolate more efficiently

increasing function of pR⇤

[Poletto et al. PLoS Comp Bio 2013]

R⇤ = (hki � 1)

"
1�

✓
1

R0

◆ pR1
µ

#
competing diseases in space



allow for different R0 

0.6 0.8 1.0 1.2 1.4 1.6
1.0

1.5

2.0

2.5

3.0

τ

r

crossover

slow strain
always 
dominates

fast strain
always 
dominates

→ when does mobility matters?

G = µ(R0 � 1)

exponential growth in  
homogenous mixing 

R⇤

percolation capability

[Poletto et al. Sci Rep 2015]

competing diseases in space



conclusion

- interaction between pathogens critical for the 
epidemic outcome 

- the interaction dynamics is critically affected by the 
structure of the host population, e.g. contact 
behaviour and mobility



Outline

-modeling an epidemic 

-epidemics on networks  

-epidemics in space 

-interacting epidemics 

-computer simulations



input
software: GLEaMviz.org

GLEAM Server + GLEAMviz Client 
GLEAM Server: uses GLEAM as the 
engine to perform the simulations on high-
performance computers 

GLEAMviz Client: desktop application to 
interact with tGLEAM Server through a 
visual interface 

http://GLEaMviz.org


output
software: GLEaMviz.org

GLEAM Server + GLEAMviz Client 
GLEAM Server: uses GLEAM as the 
engine to perform the simulations on high-
performance computers 

GLEAMviz Client: desktop application to 
interact with tGLEAM Server through a 
visual interface 

http://GLEaMviz.org
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python package: epidemic 
threshold

infection propagator 
approach for 
temporal networks
[Valdano et al PRX 2015]

https://github.com/eugenio-valdano/threshold



python package: spreading 
dynamics on networks

github.com/springer-math/
Mathematics-of-Epidemics-on-
Networks

epidemicsonnetworks.readthedocs.io/
en/latest/index.html

Mathematics of Epidemics on 
Networks' by Kiss, Miller, and 
Simon 



data: sociopatterns.org
Close proximity interaction 
data collected with RFID tags 
in different settings 

http://sociopatterns.org


l  One variable=one individuals 

l  We assign possible states to each value of 
each variable 

For instance Tim= a3 

Vector = (a1,a2,a3,……………………..an) 

ai =0   =>    susceptible 
ai =1   =>    infected 
ai= 2   =>    removed 

SIR on network: pseudo-code
Aij Adjacency matrix

n number of nodes
� transmission probability per link & per time step



SIR on network: pseudo-code
Aij Adjacency matrix

n number of nodes
� transmission probability per link & per time step

l  Do i=1, n 
l  If ai(t)=1 with probability µ        ai(t+1)=2 
l  If ai(t)=0 then 
l  Do j=1, n 

l  If Aij=1 and aj(t)=1 
l  With proability β         ai(t+1)=1 

l  End do 

l  End do 
Repeat over time step until ai is only 0 or  2   
At each time step measure the quantities of infected etc. 

 



thank you!
www.epicx-lab.com 

chiara-poletto.weebly.com 

@chpoletto 

https://www.epicx-lab.com/index.html
http://chiara-poletto.weebly.com/
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